

SHORT COMMUNICATION

M. Steinlechner · B. Berger · R. Scheithauer

W. Parson

Population genetics of ten STR loci (AmpF ℓ STR SGM plus) in Austria

Received: 28 February 2000 / Accepted: 22 May 2000

Abstract A population study on the ten short tandem repeat (STR) loci D3S1358, VWA, D16S539, D2S1338, D8S1179, D21S11, D18S51, D19S433, TH01 and FGA was performed on 204 unrelated Austrian Caucasians. The DNA was amplified by multiplex PCR using the AmpF ℓ STR SGM plus kit. All loci met Hardy-Weinberg expectations. The combined power of exclusion for the ten STR loci was 0.999976. The results show that these loci are very useful for forensic purposes.

Keywords DNA · Short tandem repeats · Population study · Forensic science · Austria

Introduction

A population study was carried out on unrelated Austrian Caucasian individuals to determine allele and genotype frequencies for forensic purposes. In the current study, population data were obtained for the ten STR loci included in the AmpF ℓ STR SGM Plus kit (Perkin Elmer, Foster City, Calif.). These loci are the PCR-based markers currently used for the Austrian National DNA intelligence database.

Material and methods

Buccal swabs were taken from 204 unrelated Austrian Caucasians and DNA was extracted by chelex extraction [1]. Amplification was carried out using 10 ng of template DNA applying the AmpF ℓ STR SGM plus systems kit (Perkin Elmer) in a Perkin Elmer 9600 thermal cycler, according to the manufacturer's recommendations and products were loaded on the CE310 Genetic Analyser (ABI), using Genescan-500 ROX (Perkin Elmer) as internal lane standard. GeneScan analysis was performed on the raw data, and alleles were

Table 1 Distribution of allele frequencies and counts for the 10 STR loci in 204 unrelated Austrians

D21S11			TH01		
Allele	n	Frequency	Allele	n	Frequency
26	2	0.005	5	3	0.007
27	7	0.017	6	95	0.233
28	71	0.174	7	55	0.135
29	85	0.208	8	43	0.105
29.2	1	0.002	8.3	1	0.002
30	85	0.208	9	80	0.196
30.2	23	0.056	9.3	126	0.309
31	42	0.103	10	5	0.012
31.2	34	0.083			
32	6	0.015			
32.2	28	0.069			
33.2	22	0.054			
34.2	1	0.002			
35.2	1	0.002			
D18S51			D8S1179		
Allele	n	Frequency	Allele	n	Frequency
10	4	0.010	8	5	0.012
11	7	0.017	9	6	0.015
12	63	0.154	10	39	0.096
13	52	0.127	11	21	0.051
14	53	0.130	12	64	0.157
15	64	0.157	13	126	0.309
15.1	1	0.002	14	104	0.255
16	60	0.147	15	32	0.078
17	44	0.108	16	11	0.027
18	30	0.074			
19	17	0.042			
20	7	0.017			
21	3	0.007			
22	2	0.005			
23	1	0.002			

M. Steinlechner (✉) · B. Berger · R. Scheithauer · W. Parson

Institute of Legal Medicine, Müllerstrasse 44,
6020 Innsbruck, Austriae-mail: martin.steinlechner@uibk.ac.at,
Tel.: +43-512-5073307, Fax: +43-512-5072770

Table 1 (continued)

VWA			FGA		
Allele	n	Frequency	Allele	n	Frequency
13	1	0.002	15	1	0.002
14	41	0.100	17	1	0.002
15	42	0.103	18	8	0.020
16	92	0.225	19	24	0.059
17	91	0.223	20	48	0.118
18	91	0.223	20.2	1	0.002
19	44	0.108	21	67	0.164
20	5	0.012	21.2	1	0.002
21	1	0.002	22	70	0.172
			22.2	3	0.007
			23	65	0.159
			23.2	4	0.010
			24	69	0.169
			25	29	0.071
			26	11	0.027
			27	5	0.012
			28	1	0.002
D3S1358			D16S539		
Allele	n	Frequency	Allele	n	Frequency
13	2	0.005	8	6	0.015
14	48	0.118	9	39	0.096
15	103	0.252	10	16	0.039
16	90	0.221	11	128	0.314
17	87	0.213	12	129	0.316
18	76	0.186	13	79	0.194
19	2	0.005	14	8	0.020
			14	8	0.020
			15	3	0.007

labelled according to the international nomenclature [2] using the Genotyper Software package (Perkin Elmer).

Allele frequencies were calculated from the numbers of each genotype obtained in the sample set. Unbiased estimates of expected heterozygosity were computed as described by Edwards et al. [3]. Possible divergence from Hardy-Weinberg expectations was tested by calculating the unbiased estimate of the expected homozygote/heterozygote frequencies [4], the likelihood ratio test [3, 4, 5] and the exact test [6]. An interclass criterion was used for detecting disequilibrium between loci [7]. The power of exclusion was calcu-

Table 1 (continued)

D2S1338			D19S433		
Allele	n	Frequency	Allele	n	Frequency
16	11	0.027	9	1	0.002
17	97	0.238	11	1	0.002
18	45	0.110	12	35	0.086
19	53	0.130	12.2	1	0.002
20	46	0.113	13	88	0.216
21	13	0.032	13.2	8	0.020
22	11	0.027	14	147	0.360
23	32	0.078	14.2	13	0.032
24	45	0.110	15	63	0.154
25	44	0.108	15.2	14	0.034
26	11	0.027	16	25	0.061
			16.2	8	0.020
			17	2	0.005
			17.2	1	0.002
			18.2	1	0.002

lated according to Garber and Morris [8] and the power of discrimination was calculated according to Fisher [9]. Analyses were facilitated using a computer program kindly provided by Bruce Budowle (FBI Academy, Quantico, Va.) and DNVIEW software designed by Charles Brenner (Berkeley, Calif.).

Results and discussion

Allele frequencies of the ten STR loci investigated are shown in Table 1.

All ten loci showed no significant deviation from Hardy-Weinberg expectations (Table 2). Pair-wise interclass correlation tests were performed for all possible two-locus combinations, and no deviations were detected in 45 pair-wise comparisons. The PD and PE for this Austrian Caucasian population sample are listed in Table 3.

The Austrian population allele frequencies were similar to those found in other Caucasian populations for the same loci (data not shown) [10, 11, 12, 13, 14, 15].

In conclusion, the use of the AmpF ℓ STR SGM plus PCR system offers a highly polymorphic tool for paternity testing and DNA intelligence databases.

Table 2 Summary of statistical analysis for the STR loci in AmpF ℓ STR SGM plus (*these values are probability values)

Statistical parameters	Locus									
	D21S11	TH01	D18S51	D8S1179	VWA	FGA	D3S1358	D16S539	D2S1338	D19S433
Observed homozygosity	15.7%	20.1%	9.8%	20.6%	16.7%	9.8%	20.1%	27.9%	13.2%	23.0%
Expected homozygosity (unbiased)	14.4%	21.6%	12.1%	20.2%	18.1%	13.2%	20.4%	24.5%	12.9%	21.2%
Homozygosity test ^a	0.597	0.612	0.323	0.891	0.599	0.151	0.901	0.258	0.896	0.529
Likelihood test ^a	0.120	0.621	0.621	0.463	0.161	0.516	0.888	0.101	0.211	0.573
Exact test ^a	0.123	0.690	0.743	0.746	0.144	0.597	0.934	0.059	0.183	0.418

Table 3 Power of discrimination (PD) and probability of exclusion (PE) for the STR loci in AmpF ℓ STR SGM plus

Locus	PD ^a	PD ^b	PE
D21S11	0.9582	0.9623	0.7093
TH01	0.9158	0.9193	0.5747
D18S51	0.9687	0.9722	0.7510
D8S1179	0.9323	0.9308	0.6078
VWA	0.9336	0.9410	0.6354
FGA	0.9628	0.9673	0.7295
D3S1358	0.9223	0.9247	0.5871
D16S539	0.8945	0.8989	0.5294
D2S1338	0.9648	0.9696	0.7383
D19S433	0.9250	0.9278	0.5999

^a PD calculated using observed data^b PD calculated using expected data

References

- Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. *Biotechniques* 10: 506–513
- Bär W, Brinkmann B, Budowle B, Carracedo A, Gill P, Lincoln P, Mayr W, Olaisen B (1997) DNA recommendations: further report of the DNA Commission of the ISFH regarding the use of short tandem repeat systems. *Int J Legal Med* 110: 175–176
- Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R (1992) Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. *Genomics* 12: 241–253
- Chakraborty R, Fornage M, Gueguen R, Boerwinkle E (1991) Population genetics of hypervariable loci: analysis of PCR based VNTR polymorphism within a population. In: Burke T, Dolf G, Jeffreys AJ, Wolff R (eds) *DNA fingerprinting: approaches and application*. Birkhäuser, Berlin, pp 127–143
- Weir BS (1992) Independence of VNTR alleles defined as fixed bins. *Genetics* 130: 873–887
- Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. *Biometrics* 48: 361–372
- Karlin S, Cameron EC, Williams PT (1981) Sibling and parent-offspring correlation estimation with variable family size. *Proc Natl Acad Sci USA* 78: 2664–2668
- Garber RA, Morris JW (1983) General equations for the average power of exclusion for genetic system of n codominant alleles in one-parent cases of disputed parentage testing. In: Walker R (ed) *International workshop on inclusion probabilities in parentage testing*. American Association of Blood Banks, Arlington, Va, pp 277–280
- Fisher R (1951) Standard calculation of evaluating a blood group system. *Heredity* 5: 95–102
- Ambach E, Parson W, Niederstätter H, Budowle B (1997) Austrian Caucasian population data for the quadruplex plus amelogenin: refined mutation rate for Hum vWFA31/A. *J Forensic Sci* 42: 1136–1139
- Klantschar M, Kubat M (1995) A study of the short tandem repeat systems HUMVWA and HUMTH01 in an Austrian population sample. *Int J Legal Med* 107: 329–330
- Neuhuber F, Radacher M, Meisner N, Tutsch-Bauer E (1999) Nine STR markers plus amelogenin (AmpF ℓ STR Profiler Plus): a forensic study in an Austrian population. *Int J Legal Med* 113: 60–62
- Binda S, Borer UV, Gehrig C, Hochmeister M, Budowle B (2000) Swiss Caucasian population data for the STR loci D2S1338 and D19S433 using the AmpF ℓ STR SGM plus PCR amplification kit. *Forensic Sci Int* 108: 117–120
- Hantschel M, Hausmann R, Lederer T, Martus P, Betz P (1999) Population genetics of nine short tandem repeat (STR) loci – DNA typing using the AmpF ℓ STR profiler PCR amplification kit. *Int J Legal Med* 112: 393–395
- Martin P, Garcia O, Albaran C, Garcia P, Sancho M, Alonso A. (1999) Spanish population data on the four STR loci D8S1179, D16S539, D18S51 and D21S11. *Int J Legal Med* 112: 340–341